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ABSTRACT The OC43 coronavirus is a human pathogen that usually causes only the
common cold. One of its key enzymes, similar to other coronaviruses, is the 29-O-RNA
methyltransferase (MTase), which is essential for viral RNA stability and expression.
Here, we report the crystal structure of the 29-O-RNA MTase in a complex with the
pan-methyltransferase inhibitor sinefungin solved at 2.2-Å resolution. The structure
reveals an overall fold consistent with the fold observed in other coronaviral MTases.
The major differences are in the conformation of the C terminus of the nsp16 subunit
and an additional helix in the N terminus of the nsp10 subunits. The structural analysis
also revealed very high conservation of the S-adenosyl methionine (SAM) binding
pocket, suggesting that the SAM pocket is a suitable spot for the design of antivirals
effective against all human coronaviruses.

IMPORTANCE Some coronaviruses are dangerous pathogens, while some cause only
common colds. The reasons are not understood, although the spike proteins prob-
ably play an important role. However, to understand the coronaviral biology in suffi-
cient detail, we need to compare the key enzymes from different coronaviruses. We
solved the crystal structure of 29-O-RNA methyltransferase of the OC43 coronavirus,
a virus that usually causes mild colds. The structure revealed some differences in the
overall fold but also revealed that the SAM binding site is conserved, suggesting
that development of antivirals against multiple coronaviruses is feasible.
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Prior to the COVID-19 pandemic, only six other human coronaviruses were known:
severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory

syndrome coronavirus (MERS-CoV), and four other coronaviruses, OC43 (organ culture 43),
229E, NL63, and HKU1, which are responsible for up to 30% of mild respiratory diseases
(1). All of these are members of the subfamily Orthocoronavirinae of the Coronaviridae fam-
ily. The Orthocoronavirinae subfamily is further divided into four genera: Alpha-, Beta-,
Gamma-, and Deltacoronavirus. 229E-CoV and NL63-CoV are members of the genus
Alphacoronavirus, while OC43-CoV, HKU1-CoV, SARS-CoV, SARS-CoV-2, and MERS-CoV are
all members of the genus Betacoronavirus (2).

The OC43 coronavirus has a 30.7-kbp, positive-sense, single-stranded-RNA (1RNA)
genome. That is unusual for a 1RNA virus but similar to other coronaviruses (3). It was
transmitted to humans recently, in the 19th century, probably from cattle; the bovine
CoV is its closet relative. It has also been speculated that OC43-CoV might be responsible
for the 1889–1890 pandemic (4), which has usually been attributed to the H2N2 influ-
enza strain (5). Interestingly, while OC43-CoV usually infects the upper respiratory tract
and causes respiratory diseases, it is also neurotropic and can be neuroinvasive (6, 7).

The coronaviral genome usually encodes two polyproteins (pp1a and pp1ab), the
spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins, and several acces-
sory proteins. OC43, in addition, encodes hemagglutinin esterase (HE), which dramati-
cally increases its infectivity (8). The pp1a and pp1ab polyproteins are autocatalytically
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cleaved into 16 nonstructural proteins (nsp1 to nsp16) that ensure many enzymatic
activities needed for viral replication, most notably the RNA replication machinery (9).
nsp7, nsp8, and nsp12 form the viral RNA-dependent RNA polymerase (RdRp), nsp13
functions as a helicase, and nsp10, nsp14, and nsp16 are RNA methyltransferases
(MTases). nsp14 is responsible for proofreading during RNA synthesis; it also has an addi-
tional enzymatic activity as an exoribonuclease (10).

In this study, we focused on the 29-O MTase of OC43-CoV. RNA methylation is im-
portant for (viral) RNA stability; it protects the RNA from degradation (innate immunity
shielding) and facilitates its efficient translation (11–13). Installation of the 59 cap in co-
ronavirus-infected cells is a four-step process: (i) the 59 gamma phosphate of the nas-
cent RNA is hydrolyzed, probably by the coronaviral nsp13 helicase; (ii) GMP is trans-
ferred to the 59 end by an unknown guanylyltransferase; (iii) the nsp10:nsp14 protein
complex methylates the N-7 position of the newly attached guanosine; and (iv) the
nsp10:nsp16 protein complex methylates the 29-O of the first nucleotide ribose. The
goal is to create viral RNA that is stable in human cells, is efficiently translated, and
does not induce the innate immune response. Nonmethylated RNA is recognized by
the RIG-I (retinoic acid-inducible gene I) pattern recognition receptor and is also recog-
nized by and binds to interferon (IFN)-induced protein with tetratricopeptide repeats 1
and 5 (IFIT1 and IFIT5), which efficiently prevent its translation (14, 15). These facts
imply that inhibiting the nsp10:nsp16 MTase is a valid strategy to fight coronaviral
infections.

Here, we present the crystal structure of the OC43-CoV 29-O MTase (nsp10:nsp16
complex) to understand how different coronaviruses evade innate immunity. The
structure revealed relatively high conservation of the architecture of the active site
between OC43-CoV and SARS-CoV-2 and suggested that the design of MTase inhibitors
targeting multiple human coronaviruses is feasible.

RESULTS
Crystallization of the OC43-CoV nsp10:nsp16 MTase.We analyzed the sequences

of all human coronaviral nsp10 and nsp16 proteins (Fig. 1). The OC43 nsp10 has 53%
sequence identity and 68% sequence similarity to the nsp10 of SARS-CoV-2, and simi-
larly, the OC43 nsp16 displays 66% sequence identity and 76% sequence similarity to
the nsp16 of SARS-CoV-2, which are not high degrees of identity and similarity for viruses
of the same genus. We aimed to solve the crystal structure of the nsp10:nsp16 MTase of
OC43 to learn the degree of conservation of the three-dimensional (3-D) structure of an
essential enzyme between these two coronaviruses. We used full-length nsp16 and
slightly truncated nsp10 (residues 10 to 131) for crystallization trials (Fig. 2A). Both
proteins were expressed recombinantly and purified to homogeneity, and the enzymatic
activity of the recombinant nsp10:nsp16 protein complex was verified (Fig. 2B). Next, we
started the crystallization trials. Eventually, we obtained crystals that diffracted to 2.2Å.
We solved the structure by molecular replacement and refined it to good R factors and
geometry (details in Table 1 and Materials and Methods).

The overall fold of OC43-CoV nsp10:nsp16 MTase. The overall fold is consistent
with the fold of previously analyzed coronaviral nsp10:nsp16 MTases from SARS-CoV-2,
SARS-CoV, and MERS-CoV (16–19). We could trace the entire protein chain except for
the very last five residues of nsp16 and the last residue of nsp10. The nsp16 subunit is
composed of 10 b-sheets and 11 helices (Fig. 2). It exhibits a Rossmann fold where the
b-sheets are arranged in a central b-motif in the shape of a letter “J” that is sur-
rounded by a-helices (Fig. 2C and D). The small nsp10 subunit is composed only of
three small b-sheets and five a-helices (Fig. 2C and D). The nsp10 fold is stabilized by
two zinc fingers. The first zinc finger stabilizes the central part of the nsp10 molecule
and is formed by Cys74, Cys77, His83, and Cys90. The second zinc finger stabilizes the
very C terminus and is formed by Cys166, Cys119, Cys127, and Cys129 (Fig. 2E and F).
Notably, all the residues forming both zinc fingers are absolutely conserved among
human coronaviruses, highlighting their importance for the function of the nsp10
protein.
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FIG 1 Sequence alignment of all human coronaviral nsp10 and nsp16 proteins. (A) nsp10 and (B) nsp16. Identical
residues are highlighted in red fields, while conserved residues are in red font. Important residues involved in

(Continued on next page)
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S-Adenosyl methionine (SAM) binding pocket. Prior to crystallization trials, the
nsp10:nsp16 29-O MTase was supplemented with 1mM sinefungin, an adenosine deriv-
ative originally isolated from Streptomyces griseolus by Eli Lilly and Co. as a potential
antibiotic (20) that is a pan-methyltransferase inhibitor. The electron density for sine-
fungin is clearly visible (Fig. 2C). Detailed analysis revealed residues that are responsi-
ble for sinefungin binding. Asp114 binds the adenine amino group, while Asp99 forms
hydrogen bonds with both ribosyl hydroxyl groups. The amino acid moiety of sinefun-
gin is coordinated by hydrogen bonds to Asp130 and Tyr47, while Asn43 and His69
contribute to ligand binding via water bridges (Fig. 3). All of these residues are abso-
lutely conserved in human coronaviruses (Fig. 1), even Asn43 and His69, which contrib-
ute to ligand binding indirectly.

FIG 2 The crystal structure of the methyltransferase complex (nsp10:nsp16) from OC43-CoV. (A) Schematic representation of the
crystallized and full-length nsp10:nsp16 proteins. (B) SDS-PAGE gel illustrating the purity of the recombinant nsp10:nsp16
complex and a graph illustrating its enzymatic activity. Values are for the reaction performed with all components except the
enzyme (1st bar), with all components except for the RNA (2nd bar), and with all components (3rd bar). Error bars show standard
deviations. A.U., arbitrary units. (C) Overall crystal structure of the nsp10:nsp16 complex (ribbon) with a sinefungin molecule
(white) bound in the active site (SFG) and a “kick-out” omit map (Fo 2 Fc) of electron density (green) at 3.5 sigma with SFG
excluded from the calculation. (D) Topological representation of the secondary-structure features of the complex. (E and F) Zn21

coordination centers in nsp10 in kick-out omit maps (Fo 2 Fc) of electron density (green) at 10 sigma with Zn21 excluded from
the calculation.

FIG 1 Legend (Continued)
coordination of zinc are marked by asterisks below the alignments, and whole zinc-binding regions are in
dashed-line boxes, while residues coordinating sinefungin are marked by empty triangles. Secondary-structure
features of OC43-CoV are symbolized by helices and arrows for beta sheets.
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Comparison to SARS-CoV-2 nsp10:nsp16 MTase. We compared the structures of
OC43 and SARS-CoV-2 nsp10:nsp16 MTases to gain insight into the structural conserva-
tion of this enzyme within human coronaviruses. The overall fold remains conserved,
with root mean square deviations (RMSD) of 0.99 Å2 for the nsp16 and 1.03 Å2 for the
nsp10 protein (Fig. 4A), as does the sinefungin binding pocket, with the exception of
Tyr101, where most human CoVs (SARS-CoV, SARS-CoV-2, MERS-CoV, NL63-CoV, and
HKU1-CoV) have an Asn residue instead (Fig. 1 and 3C).

However, the structural alignment also revealed significant differences. The C termi-
nus of OC43-CoV nsp16 is located at the nsp10:nsp16 interface and contributes to
nsp10:nsp16 binding. While the SARS-CoV-2 nsp16 C terminus is folded away from the
interface and actually forms crystal contacts, which the SARS-CoV-2 nsp16 N terminus
does as well (Fig. 4D to F). SARS-CoV-2 nsp16 also has a final b-sheet (b-12) that is anti-
parallel to b-5. Surprisingly, this b-sheet (b-12) is missing on the OC43 nsp16. On the

TABLE 1 Crystallographic data collection and refinement statistics

Parametera Value(s) for OC43 nsp10:nsp16b

PDB accession code 7NH7

Data collection and processing
Space group P31
Cell dimensions—a, b, c (Å) 61.9, 61.9, 109.7
X-ray source Home source
Wavelength (Å) 1.5419
Resolution range (Å) 36.57–2.2 (2.28–2.2)
No. of unique reflections 23,828 (2,385)
Completeness (%) 99.74 (99.13)
Multiplicity 5.1 (4.7)
Mean I/shIi 11.66 (2.48)
CC1/2 0.981 (0.687)
CC* 0.995 (0.902)
Rmerge (%) 13.05 (62.57)

Structure solution and refinement
Rwork (%) 16.41 (21.51)
Rfree (%) 21.01 (29.29)
RMSD bond length (Å)/bond angle (°) 0.005/0.86
Avg B factors (Å2) 28.24
Clashscore 7.84
Ramachandran plot—favored regions/outlier regions (%) 97.32/0

aCC1/2, correlation of one half of the observations with the other half; CC*, correlation of the observed data with
the unknown “true” intensities.

bNumbers in parentheses refer to the highest-resolution shell.

FIG 3 Detail of sinefungin binding to nsp16. (A) Overall surface representation of the nsp10:nsp16 complex of OC43-CoV. (B)
Detailed view of the sinefungin interaction with the active site of the enzyme. The amino acids involved in the interaction are shown
as sticks, the waters are shown as red spheres, and the hydrogen bonds are depicted as dashed lines. (C) Structural comparison of
OC43-CoV, SARS-CoV, SARS-CoV-2, and MERS-CoV nsp16 sinefungin binding sites.
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other hand, the OC43 nsp10 has an additional a-helix (residues 11 to 20) that is not
present in the SARS-CoV-2 nsp10 (Fig. 4B).

DISCUSSION

Before the appearance of SARS and MERS, the coronaviruses were rather an insignif-
icant group that did not attract that much attention (21), despite some of the most im-
portant discoveries, such as proteolytical processing of the spike protein (at that time
called the E2 glycoprotein) or that the leader sequence of subgenomic RNAs comes
from the 59 end of the genome, having already been made (22, 23). Upon the appear-
ance of MERS and SARS, the coronaviruses attracted significant scientific interest that
led to the molecular description of their life cycle (reviewed in Snijder et al. [9]),

FIG 4 Structural alignment of the OC43-CoV and SARS-CoV-2 29-O-RNA MTases. (A) The overall fold of structurally aligned SARS-
Cov-2 and OC43-CoV MTases. (B) The N-terminal region of nsp10 of OC43-CoV (green) contains an additional a-helix. (C to F) The
C terminus of nsp16 of OC43-CoV (magenta) lacks the final b-sheet of nsp16 SARS-CoV-2 (cyan), and it is driven toward nsp10,
where it is a part of the nsp10:nsp16 interface (C), while the SARS-CoV-2 C terminus of nsp16 is involved in crystal contacts just
as the SARS-CoV-2 N terminus is (D to F).
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including a structural understanding of their key enzymes (19, 24–30). However, the
four human coronaviruses that generally do not cause any serious illness (OC43-, 229E-
, NL63-, and HKU1-CoVs) are still understudied. Nonetheless, it would be interesting
and important to understand why certain coronaviruses cause deadly diseases and
others just mild colds. Certainly, the spike protein is the primary determinant of patho-
genicity: both the SARS-CoV and the SARS-CoV-2 spike proteins recognize angiotensin-
converting enzyme 2 (ACE2) as the receptor (31, 32), while MERS-CoV uses dipeptidyl
peptidase 4 (33), OC43- and HKU1-CoV use 9-O-acetylated sialic acids (34), and E229-
CoV uses aminopeptidase N (35). However, NL63-CoV also uses ACE2 as its receptor
(36, 37) and causes only common colds, suggesting that other determinants of corona-
viral perilousness also exist.

Here, we report the structure of the human OC43-CoV 29-O MTase, a complex of
two nonstructural proteins, nsp10 and nsp16. The main function of this complex is to
create the cap structure on the 59 end of viral RNA. The structure revealed that despite
significant sequence differences between OC43 and other human coronaviruses, the
overall fold is well preserved: the biggest differences are an additional helix (a1) in the
nsp10 subunit that is not observed in the SARS-CoV and SARS-CoV-2 coronaviruses
and a different conformation of the OC43 nsp16 C terminus. The C terminus is also
missing a b-sheet compared to its SARS-CoV-2 counterpart.

The development of inhibitors of coronaviral MTases (both nsp14 and nsp16) has
just begun. The compounds discovered so far are potent in vitro; however, most of
them suffer from low membrane permeability, hindering their direct testing in antiviral
assays (38–40). Several compounds inhibiting the flaviviral MTase (the N-terminal do-
main of the NS5 protein) are known, and some of them are potent in cell-based antivi-
ral assays; however, none of these inhibitors is approved as a drug (41–44).

Importantly, the structure revealed high conservation of the SAM binding pocket.
All residues that make direct contact with the ligand (sinefungin) are absolutely con-
served among human coronaviruses, suggesting that mutations of these residues are
not tolerated. This is definitely good news for drug design, because compounds that
target the SAM pocket will likely be effective against all human coronaviruses and the
evolution of resistance against them is unlikely.

MATERIALS ANDMETHODS
Protein expression and purification. The genes encoding OC43 nsp10 and nsp16 proteins were

codon optimized for Escherichia coli and commercially synthesized (Thermo Fisher Scientific). The genes
were cloned in a home-made pSUMO-Kan plasmid (a pRSFD-derived vector already encoding a His8x-
SUMO solubility and purification tag). The proteins were purified using our established protocols for viral
enzymes (45, 46). Briefly, E. coli BL21 cells were transformed with nps10 and nsp16 expression vectors
and cultivated at 37°C in LB medium with the addition of ZnSO4 (10mM) and kanamycin (50mg/ml). The
production of nsp16 and nsp10 proteins was induced by the addition of IPTG (isopropyl-b-D-thiogalac-
topyranoside) (300mM) at the late exponential growth phase (optical density [OD] = 0.6 to 0.8), and the
temperature was lowered to 18°C for 18 h. The bacterial cells were collected by centrifugation, resus-
pended in lysis buffer (50mM Tris, pH 8, 300mM NaCl, 20mM imidazole, 5mM MgSO4, 3mM b-mercap-
toethanol, 10% glycerol) and lysed by sonication. The lysate was centrifuged, the supernatant was incu-
bated with Ni21 agarose (Macherey-Nagel) and washed with lysis buffer, and the recombinant proteins
were eluted by lysis buffer supplemented with 300mM imidazole. The His8x-SUMO tag was cleaved by
the Ulp1 protease during dialysis against lysis buffer. After dialysis, the His8x-SUMO tag was removed by
a second round of affinity chromatography. The proteins were further purified by gel filtration on a
HiLoad 16/600 Superdex 75 column (GE Healthcare) in size exclusion buffer {50mM Tris, pH 7.4, 150mM
NaCl, 1mM TCEP [Tris(2-carboxyethyl)phosphine hydrochloride], 5% glycerol}. The purified proteins
were mixed in a 1:1 molar ratio, concentrated to 5mg/ml, and immediately used for crystallographic tri-
als. After purification, proteins were concentrated to 5mg/ml and stored at 280°C.

Crystallization and structural analysis. The nsp10:16 protein complex was supplemented by 1mM
sinefungin. Crystals of the nsp10:nsp16 protein complex grew in 3 days in a sitting drop that was created
by mixing 300 nl of protein solution and 300 nl of mother liquor (0.1 M MES [morpholineethanesulfonic
acid], pH 6.5, 15% [vol/vol] polyethylene glycol monomethyl ether 500 [PEG 500 MME]). They were cryo-
protected in mother liquor supplemented with 20% glycerol and flash frozen in liquid nitrogen. The
crystals diffracted to 2.2-Å resolution and belonged to the trigonal P31 space group. Data were collected
using a home source (Rigaku) equipped with a Pilatus detector (Dectris). The data were indexed, scaled,
and integrated using XDS (47). The structure was solved by molecular replacement using the structure
of the SARS-CoV-2 nsp10:nsp16 (PDB accession code 6YZ1) as the search model in Phaser (48) and was
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refined in Phenix (49), together with manual building in Coot (50). The structure was refined to good R
factors (Rwork = 16.41% and Rfree = 21.01%) and good geometry as summarized in Table 1. RMSDs were
also calculated in Coot using the secondary-structure-matching algorithm.

RNA preparation. m7GpppA was prepared chemically according to a published protocol (51). A
35-mer m7GpppA-capped RNA was prepared by in vitro transcription using an DNA template (59-CAG
TAATACGACTCACTATAGGGGAAGCGGGCATGCGGCCAGCCATAGCCGATCA-39) and the TranscriptAid T7
high-yield transcription kit (Thermo Scientific). The reaction was performed in a 50-ml mixture containing
1� TranscriptAid reaction buffer, 7.5mM nucleoside triphosphates [NTPs], 6mM cap analog, 1mg tem-
plate DNA, and 1� TranscriptAid enzyme mix. The mixture was incubated for 8 h at 37°C. Next, the RNA
was purified using RNA Clean & Concentrator-5 from Zymo Research. DNase I treatment was performed
directly on the column according to the purification protocol for 15 min at room temperature.

Analysis of the nsp10:nsp16 enzymatic activity. The reaction was performed in a total volume of
15ml. The starting reaction mixture contained 10mM SAM (S-adenosyl methionine), 5mM m7GpppA-capped
RNA, and 1mM nsp10 in the MTase reaction buffer (5mM Tris, pH 8.0, 1mM MgCl2, 3mM dithiothreitol
[DTT]). The reaction was initiated by adding 500nM nsp16 and incubated at 30°C while shaking at 350 rpm.
After 15min of incubation, 15ml of 40% methanol was added and the samples were analyzed on an Echo
mass spectrometry system coupled with a Sciex 6500 triple-quadrupole mass spectrometer operating with
an electrospray ionization source. The spectrometer was run in the multiple-reaction-monitoring (MRM)
mode with the interface heated to 350°C. The declustering potential was 20 V, the entrance potential 10 V,
and the collision energy 28eV. Ten nanoliters was injected in the mobile phase (flow rate of 0.46ml/min;
70% acetonitrile with 0.1% formic acid). The characteristic product ion of S-adenosylhomocysteine (SAH),m/z
385.1. 134.1, was used for quantification.
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