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Abstract
Monkeypox, or mpox, is a disease that has recently resurfaced and spread across the globe. Despite the availability of an 
FDA-approved vaccine (JYNNEOS) and an effective drug (tecovirimat), concerns remain over the possible recurrence of 
a viral pandemic. Like any other virus, mpox virus must overcome the immune system to replicate. Viruses have evolved 
various strategies to overcome both innate and adaptive immunity. Poxviruses possess an unusual nuclease, poxin, which 
cleaves 2'-3'-cGAMP, a cyclic dinucleotide, which is an important second messenger in the cGAS-STING signaling pathway. 
Here, we present the crystal structure of mpox poxin. The structure reveals a conserved, predominantly β-sheet fold and 
highlights the high conservation of the cGAMP binding site and of the catalytic residues His17, Tyr138, and Lys142. This 
research suggests that poxin inhibitors could be effective against multiple poxviruses.

Mpox, previously known as monkeypox, is a disease that has 
recently re-emerged [1]. It was previously endemic to cen-
tral Africa, where rodents and non-human primates might 
serve as the natural reservoir of mpox virus and transmit it 
to humans. However, it has recently spread across the globe. 
Originally, it was reported to have a high mortality rate of 
about 3-6% [2], but that seems to have been an overestimate, 
at least for the currently dominant strains. An FDA-approved 
vaccine (JYNNEOS) is available [3], and at least one FDA-
approved effective drug (tecovirimat) is also available [4]. 
Nonetheless, this virus has raised great concern about a pos-
sible recurrence of a viral pandemic and all the unpopular 
anti-pandemic measures that may be necessary. Considering 
the potential emergence of drug/vaccine-resistant strains and 
market shortages, it is prudent to ensure the availability of 
multiple drugs and vaccines.

Mpox virus (MPXV), like any other virus, must over-
come the immune system to successfully replicate [5]. Innate 
immunity is of foremost importance in the early stages of 
a viral disease before adaptive immunity can intervene. 
Viruses have evolved many strategies to overcome innate 
and adaptive immunity [6]. The HIV negative factor (Nef) 

protein downregulates the CD4 and major histocompatibil-
ity complex I (MHC-I) proteins by hijacking the endocytic 
adaptor protein complexes AP-1 and AP-2 [7]. Coronavi-
ruses such as SARS-CoV-2 and flaviviruses such as Zika 
virus and dengue virus have an RNA cap at the 5' end of 
their RNA that is chemically indistinguishable from the 
human RNA cap, and this prevents the innate immune 
system from detecting viral RNA in the cytoplasm [8, 9]. 
In fact, RNA capping was discovered to mediate effective 
translation of viral RNA in the case of vaccinia virus (family 
Poxviridae) already in the late 1970s [10]. Furthermore, like 
coronaviruses, poxviruses also possess RNA nucleases to 
prevent the accumulation of double-stranded RNA (dsRNA) 
in the cytoplasm, which would otherwise trigger an innate 
immune response [11]. However, poxviruses have developed 
additional strategies to evade the immune system, as com-
prehensively reviewed by Yu et al. [12].

Interestingly, poxviruses possess a nuclease that is 
rather unusual and was named after them – poxin [13, 
14]. Its substrate is 2',3'-cyclic guanosine monophosphate-
adenosine monophosphate (referred to as cGAMP), a 
cyclic dinucleotide that consists of AMP and GMP units 
cyclized via 3',5' and 2',5' linkages (Fig. 1). Poxins cleave 
the 3'-5' bond of cGAMP, effectively removing it from the 
cytoplasm [13, 15]. This is important for the survival of 
the virus because cGAMP is a second messenger that is 
produced by cGAMP synthase, an enzyme localized in the 
cytoplasm that is activated by the presence of DNA and is 
part of the defense against DNA viruses that replicate in 
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the cytoplasm [16]. Upon activation of cGAMP synthase, 
cGAMP is produced and binds to STING (stimulator of 
interferon genes), inducing a conformational change and 
activating STING-dependent signaling. This process is 
often referred to as the cGAS-STING (cyclic GMP-AMP 
synthase - STING) signaling pathway, and poxins effi-
ciently intercept it [17].

In this study, we successfully determined the crystal 
structure of the poxin protein from mpox virus. We have 
identified a conserved hotspot that serves as the binding site 
for cGAMP and is a potential target for inhibitor design. 
Novel strategies based on inhibition of poxin, can be devel-
oped to combat mpox virus infections.

Certain poxviruses, including mpox virus, express the 
poxin protein as a fusion with a C-terminal schlafen domain 
[13]. However, the specific function of this domain remains 
unknown. Therefore, we aimed to solve the crystal structure 
of mpox poxin domain only. We prepared the recombinant 
mpox poxin using our usual protocols for viral enzymes 
[18, 19] as detailed in the supplementary information. After 
some optimization, we obtained crystals that belonged to the 
monoclinic  P21 spacegroup and diffracted to 1.7Å resolu-
tion. The structure was solved by molecular replacement 
using the vaccinia virus (VACV) poxin as a search model 
[13], and it was refined to good R-factors  (Rwork = 21.36%, 
 Rfree = 22.84%) and good geometry (Table 1).

The structure revealed a predominantly β-sheet fold that 
could be divided into an N-terminal protease-like domain 
(NTD) and a C-terminal domain (CTD) (Fig. 2), similar to 
those found in the poxins of VACV [13] and baculoviruses 
[15]. The NTD is composed of twelve β-strands that form 
five antiparallel β-sheets, each composed of two or three 
β-strands (β-1&2&3, β-9&10, β-4&5, β-8&11, β-6&7&12). 
The CTD contains the only α-helix (α1) and two β-sheets, 
one consisting of two and the other of four β-strands.

However, to form an active enzyme, poxin needs to form 
a dimer [13, 15], which we also observed in our crystal 
structure (Fig. 3). The dimer is held together by a network 
of hydrogen bonds that form between antiparallel β-strands 
of different subunits. Two novel β-sheets are formed by 

hydrogen bonding between β-strands from different poxin 
monomers (Fig. 3, right panels).

The mpox poxin shares 91% identity with the VACV 
poxin (Supplementary Fig. S1). We analyzed the conserva-
tion of the catalytic residues. The cGAMP binding site is 
localized at the dimer interface, and His17 from one mono-
mer and Tyr138 with Lys142 from the other were identi-
fied as the residues responsible for poxin-catalyzed cleav-
age of cGAMP, as in the case of the VACV poxin [13]. We 
superimposed the structures of the mpox and VACV poxins, 
revealing that these residues are conserved and in the same 
conformation in both of these proteins (Fig. 4).

These findings indicate that poxin is a promising target 
for the development of drugs that can effectively combat 
multiple members of the family Poxviridae. However, the 
effectiveness of using poxin as an antiviral target requires 
the development of potent inhibitors to confirm its potential. 
Tecovirimat, the only FDA-approved drug against mpox, is 
an inhibitor of the envelope protein p37 [4, 20, 21]. Tra-
ditionally, most antiviral drugs target enzymes such as 
the polymerase, protease, or integrase. However, recently, 
especially during the COVID-19 pandemic, inhibitors of 
other enzymes such as RNA-methyltransferases have been 
reported by us and others [8, 22–25], and we also reported 

Fig. 1  Chemical structure of cGAMP. The 2', 3', and 5' position of the 
ribose are highlighted in blue. The poxin cleavage site is shown in 
red.

Table 1  Statistics of crystallographic data and refinement

Crystal Mpox poxin

PDB accession code 8C9K
Data collection and processing
Space group P21

Cell dimensions
a, b, c (Å) 54.43, 94.13, 94.67
α, β, γ (°) 90, 105.26, 90
Resolution range (Å) 41.09-1.72 (1.782-1.72)
No. of unique reflections 200402 (9723)
Completeness (%) 99.36 (99.72)
Multiplicity 3.4 (3.5)
Mean I/σ(I) 8.71 (0.84)
R-merge 0.1353 (2.239)
R-meas 0.1466 (2.418)
CC1/2 (%) 0.998 (0.462)
CC* (%) 0.999 (0.795)
Structure solution and refinement
R-work (%) 21.36 (38.32)
R-free (%) 22.84 (41.23)
CC-work (%) 96.5 (68.6)
CC-free (%) 94.3 (42.5)
Ramachandran favored/outliers (%) 96.22/0
R.m.s.d.
Bonds (Å) 0.003
Angles (°) 0.72
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inhibitors of the mpox methyltransferase VP39 [26]. Inter-
estingly, inhibitors of capsid proteins have also reached the 
market, most notably, Gilead Science's HIV capsid inhibitor 
lenacapavir [27, 28]. The natural ligand of poxin is the cyclic 
dinucleotide cGAMP, which normally activates STING. 
Recently, many cGAMP analogs have been prepared, and 

the medicinal chemistry of these compounds is now well 
understood [29–32]. Some of these have been shown to be 
resistant to cleavage by poxins [33]. We speculate that the 
use of these compounds will help to determine the exact role 
of poxins in the life cycle of poxviruses and establish the 
suitability of poxins as drug targets.

Fig. 2  Structure of the mpox 
poxin. The mpox poxin can 
be divided in two domains. 
The first is the N-terminal or 
protease-like domain (depicted 
in gold), which comprises 
twelve β-strands that come 
together to form five β-sheets. 
The second is the C-terminal 
domain (depicted in cyan), 
which is composed of a single 
α-helix and six β-strands that 
form two β-sheets.

Fig. 3  The poxin dimer. The active mpox poxin homodimer complex, shown in a surface representation, forms a heart-like shape. Poxin dimeri-
zation occurs through hydrogen bonds between antiparallel β-strands in both subunits.
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Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00705- 023- 05824-4.
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