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ARTICLE INFO ABSTRACT

Keywords: We report the crystal structure of the SARS-CoV-2 putative primase composed of the nsp7 and nsp8 proteins. We
SARS-CoV-2 observed a dimer of dimers (2:2 nsp7-nsp8) in the crystallographic asymmetric unit. The structure revealed a
RNA fold with a helical core of the heterotetramer formed by both nsp7 and nsp8 that is flanked with two symmetry-
Primase

Crystal structure

related nsp8 B-sheet subdomains. It was also revealed that two hydrophobic interfaces one of approx. 1340 A?
connects the nsp7 to nsp8 and a second one of approx. 950 A2 connects the dimers and form the observed

heterotetramer. Interestingly, analysis of the surface electrostatic potential revealed a putative RNA binding site
that is formed only within the heterotetramer.

1. Introduction

The coronavirus disease 2019 (COVID-19) has recently resulted in a
global pandemic affecting the lives of millions of people all along both
the health and economic spectra (Huang et al., 2020; Zhu et al., 2020).
The disease is caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2, further referred to as CoV-2), one of only seven known
human coronaviruses, which belong to either alpha or beta cor-
onaviruses (Coronaviridae Study Group of the International Committee
on Taxonomy of, 2020; Gralinski and Menachery, 2020). Two other
genera of coronaviruses, gamma and delta, do not comprise any
members that affect human health and are mostly found in other
mammals (mostly pigs) or avian species (Chu et al., 2011; Torres et al.,
2016; Wang et al., 2014; Woo et al., 2012). Most of the human cor-
onavirus infections are mild and are estimated to cause up to 15% of the
common cold cases (Perlman and Netland, 2009). Unfortunately, some
beta-coronaviruses, namely SARS-CoV, MERS-CoV and the newly
emerging CoV-2 can develop into a life threatening lower respiratory
syndrome characterized by severe pneumonia with significant lethality
(Huang et al., 2020; Ksiazek et al., 2003; Rota et al., 2003; Zaki et al.,
2012; Zumla et al., 2015).

Coronaviruses are single-stranded RNA viruses with positive po-
larity (4+RNA viruses), which possess very large nonsegmented gen-
omes ranging from 27 to 32 kilobases (Ziebuhr, 2005) (the genome
CoV-2 consists of almost 30 kilobases) (Wu et al., 2020). The viral RNA
contains a type 1 cap on the 5 end and polyadenyl group on the other
end (Ziebuhr, 2005). Approximately two-thirds of the genome contains
genetic information for just two open reading frames, ORF 1a and ORF
1b. Notably, the expression of ORF 1b requires a —1 ribosomal
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frameshift upstream of the ORFla stop codon which leads to sig-
nificantly lower expression of genes located in ORF 1b (Snijder et al.,
2016). These ORFs encode proteins mainly of the RNA replication
machinery and translate into two polyproteins (ppla and pplb). Both
polyproteins are subsequently processed by papain-like cysteine pro-
tease (PLP™) and 3C like serine proteases (3CLP™ also termed the main
protease, nsp5) that are part of ppla (Zumla et al., 2016). The ORFla
encodes for nspl to 11 (including both aforementioned proteases PLP™
and 3CLP™), whereas the ORF1b encodes for nsps 12-16 including the
most important replication enzymes, the RNA-dependent RNA poly-
merase (nsp12) and the helicase (nsp13) (Snijder et al., 2016). The last
third of the coronavirus genome encodes for four structural proteins (S -
spike glycoprotein, E - envelope protein, M - matrix protein, and N -
nucleocapsid protein) (Rota et al., 2003).

In general, +RNA viruses use the RNA-dependent RNA polymerase
(RdRp) as the major enzyme responsible for copying viral RNA mole-
cules to minus-strand RNA and subsequent synthesis of multiple novel
plus-strands to serve as mRNA and also for the assembly of newly
formed virions (Dubankova and Boura, 2019; Hercik et al., 2017;
Sebera et al., 2018). Due to the large size and complexity of its genome,
RNA replication of a coronavirus involves multi-subunit replication/
transcription machinery (Snijder et al., 2016). Thus, the RdRp’s cata-
lytic domain of coronaviruses occupies approx. two-thirds of the nsp12
C-terminus, whereas the N-terminus seems to interact with several
other proteins of the replicase supercomplex including nsp8 and nsp9
(Snijder et al., 2016). According to the structural and functional studies
performed on the proteins form SARS-CoV, the molecules of nsp8 form
hexadecameric structures with molecules of another nonstructural
protein, nsp7. This nsp7-nsp8 complex forms a hollow, cylinder-like
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structure that can accommodate dsRNA and was suggested to possess
primase activity (Snijder et al., 2016; Zhai et al., 2005). In contrast, a
recent CryoEM structure of SARS-CoV nsp7-nsp8-nsp12 complex shows
that the putative primase activity cannot be associated with the entire
complex, since it would not be able to bring the amino acids essential
for primase activity within adequate proximity of the nsp12 catalytic
center. Thus, the mechanism by which coronaviruses initiates RNA
synthesis remains elusive (Kirchdoerfer and Ward, 2019). However, the
formation nsp7-nsp8-nspl2 complex plays an essential role in the
process of activation of the coronavirus RdRp, which seems to be rather
poorly active on its own in vitro (Kirchdoerfer and Ward, 2019). Asso-
ciation of nsp7 and nsp8 was shown to crucially enhance the activity of
RdRp (te Velthuis et al., 2012). In addition, it was shown that nsp7-nsp8
complexes of SARS-CoV and feline-CoV are an RNA polymerase capable
of de novo initiation and it was proposed that nsp7-nsp8 function as a
primase (te Velthuis et al., 2012; Xiao et al., 2012).

Here, we report on the crystal structure of the CoV-2 nsp7-nsp8
complex. The structure revealed a dimer of dimers formed of dimers
that possess an unequal conformation. The structure illustrates that the
nsp7-nsp8 complex is stable in a dimeric form and suggests that an
nsp7-nsp8 dimer could act as a primase for the fully assembled nsp7-
nsp8-nspl2 replication complex where it probably acts as a processivity
factor.

2. Results

In this study we aimed to structurally characterize the CoV-2 pri-
mase. We truncated both proteins based on secondary structure pre-
dictions and previously solved structures of the SARS virus (Fig. 1A)
and prepared them as recombinant in E. coli and purified them to
homogeneity. The resulting nsp7-nsp8 protein complex was stable
during the size exclusion chromatography (SEC) step of protein pur-
ification therefore we used it for crystallization trials. The crystals grew
within a week, belonged to the monoclinic P2 spacegroup and dif-
fracted to almost 2 A resolution. We were able to solve the structure by
molecular replacement and to refine it to good geometry and R factors
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Table 1

Statistics for data collection and processing, structure solution and refinement
of the crystal structure of the SARS-CoV-2 nsp7-nsp8 complex. Numbers in
parentheses refer to the highest resolution. R.m.s.d., root-mean-square devia-
tion.

Crystal SARS-CoV-2 nsp7-nsp8

PDB accession code 6YHU

Data collection and processing
Space group

Cell dimensions - a, b, ¢ (&)
Cell dimensions - a, 3, v ()
Resolution range (A)

No. of unique reflections
Completeness (%)

P1211

56.4 49.7 64.8

90.0 106.4 90.0
38.79-2.0 (2.071-2.0)
23,341 (2,237)

99.39 (95.15)

Multiplicity 6.4 (5.0)

Mean I/o(I) 17.10 (2.88)
Wilson B factor (A%) 25.7

R-merge / R-meas (%) 7.41 (52.17) / 8.08
CCy 2 0.999 (0.902)

Ccc* 1.000 (0.974)

Structure solution and refinement

R-work (%) 21.43 (26.96)

R-free (%) 23.92 (29.23)
R.m.s.d. - bonds (A) / angles (°) 0.002 / 0.60
Average B factors A% 30.3
Clashscore 0.00
Ramachandran favored/outliers (%) 100 /0

(Rwork = 21.43% and Ree = 23.92%, summarized in M&M section and
in Table 1).

The crystallographic asymmetric unit contained two nsp7-nsp8
complexes forming a putative 2:2 nsp7-nsp8 heterotetramer. The
structure revealed an alpha-beta mixed fold where the dimerization
core is exclusively composed of the a-helices whereas the two flanking
C-terminal nsp8 domains have a mixed, but predominantly (3-sheet fold.
The nsp7 has a three helical bundle fold (a1™?’ Lys*Leu®’, a2"?’
Ser?®-Leu*! and a3™P” Thr*°-Ser®') while the nsp8 subunit is comprised
of two subdomains: an a-turn-a motif (a1™P® Glu””-Leu®® and a2"P®
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Fig. 1. SARS-CoV-2 nsp7-nsp8 complex crystal structure A - Schematic representation of the crystallized and wild-type proteins. B - The overall view of the putative
2:2 nsp7-nsp8 heterotetrameric complex. A detailed view of the tetrameric interface between the nsp7 and nsp8 proteins is shown. C - A detailed view of the nsp7-
nsp8 dimer with the dimeric interface highlighted. The protein backbones are shown in cartoon representation; the nsp7 and nsp8 proteins are depicted in blue and
yellow, respectively. Selected amino acid residues involved in the nsp7-nsp8 interaction are presented in the stick representation with carbon atoms colored
according to the protein assignment. D - Topology plot of the nsp7-nsp8 protein complex. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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Asp*®'-Asp'’?) and a C-terminal subdomain that has a four antiparallel
[3 strand (Blnsps Ala125 118132, ﬁznsps Thr146 Tyl’149, [33nsp8 Ala152
Val'®®, and p4"P® Leu'®4-Arg'®®) with a single inserted a-helix (a3™P®
Tyr135—Thr141) (Fig. 1). The dimerization interface is formed by the al
and a3 helices of nsp7 and al and a2 helices of nsp8, with the interface
area of approximately 1,340 A2, Within the crystal, two nsp7-nsp8 di-
mers form a putative 2:2 nsp7-nsp8 heterotetramer. The interface area
between the two nsp7-nsp8 dimers consists of approximately 950 A2
and is formed by the al and a2 helices of nsp7 and the al helix of nsp8
(Fig. 1B, C). Interestingly, both the dimerization and tetramerization
interfaces are formed almost exclusively via the hydrophobic interac-
tions. The dimer interface resembles a leucine zipper motif, it is pri-
marily formed by five leucine residues (nsp7 Leu®® °* 7! and nsp8
Leu®® '°%) and further stabilized by two phenylalanine residues (nsp7
Phe*® and nsp8 Phe®?) and several other adjacent hydrophobic residues.
Furthermore, the interaction of these two nsp7-nsp8 dimers is further
stabilized by a disulfide bridge between the symmetric cysteine residues
Cys® of nsp7.

Because the nsp7-nsp8 complex was reported to synthesize RNA we
analyzed its surface electrostatic potential in order to identify potential
RNA binding sites. A hallmark of an RNA binding site is a highly po-
sitively charged surface patch. Surprisingly, our analysis did not iden-
tify any substantially positively charged surfaces in the dimer.
However, such a place is clearly visible in the case of the tetramer
(Fig. 2). It is located at the symmetry related dimer:dimer interface. The
interior of this interface is created exclusively by hydrophobic residues,
however, its surface is framed by positively charged residues including
nsp7 and nsp8 lysine and arginine residues (nsp7 Lys* 7 ** and nsp8
Lys”® 82 97 and Arg®®). Notably, all these residues are highly conserved
among different coronaviruses except for nsp7 Lys*® that is only present
in SARS-CoV and SARS-CoV-2 (Fig. 2B). We refer to this place as the
putative RNA binding site.

3. Discussion

The function of the nsp7-nsp8 complex remains unclear. Several
different laboratories using nsp7-nsp8 complexes from a different cor-
onavirus have shown that nsp7-nsp8 complex is capable of de novo short
RNA synthesis (Imbert et al., 2006; Xiao et al., 2012). Such a function
would imply the physiological function of the nsp7-nsp8 complex as a
primase. In contrast, a hexadecameric (8x nsp7 + 8x nsp8) circular
complex for the SARS nsp7-nsp8 was described (Zhai et al., 2005) and
the authors proposed the ring to be wrapped around the RNA molecule
and acting as a processivity factor for the RARp. However, our study
using the CoV-2 nsp7-nsp8 complex nor a structural study using a feline
CoV nsp7-nsp8 (Xiao et al., 2012) observed such an intriguing ar-
rangement of the nsp7-nsp8 complex.

The recent cryoEM structure of the nsp7-nsp8-nspl2 fully-as-
sembled polymerase complex suggests that the nsp7-nsp8 dimer is lo-
cated too far from the nspl2 active site (Gao et al., 2020; Hillen et al.,
2020) so cannot act as a primase for nsp12 at least in cis (Fig. 3). No-
tably, the conformation of the nsp7-nsp8 dimer observed here super-
poses rather well with subunits of higher order assemblies described for
SARS and feline CoV-2 nsp7-nsp8 protein complexes (Fig. 3A, B) as well
as with the cryo-EM structure of the replicating polymerase composed
of nsp7-nsp8-nsp12 and RNA (Fig. 3C). Relatively small conformational
changes could govern the stoichiometry of the nsp7-nsp8 protein
complex. It is tempting to speculate that the CoV-2 nsp7-nsp8 complex
has different functions, all biologically relevant such as processivity
factor, primase or nspl2 activating factor depending on its conforma-
tion and stoichiometry. Further research has certainly been necessitated
to elucidate nsp7-nsp8 assembly during CoV-2 infection and to establish
its biological function during each phase of the viral replication within
the host cell.
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Fig. 2. Surface and sequence analysis of the SARS-CoV-2 nsp7-nsp8 hetero-
tetramer A - Electrostatic surface analysis. The surface is colored according to
the electrostatic potential from red (negative charge) to blue (positive charge).
In the lower panel, a detailed view of the positively charged groove at the nsp7-
nsp8 tetrameric interface is shown with amino acid residues contributing to the
positive charge of this groove highlighted in the stick representation. B -
Sequence alignment of homologous coronaviral proteins. Residues in red boxes
are completely conserved and those in yellow boxes are conserved more than
70%. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

4. Materials and methods

Protein expression and purification — The genes encoding nsp7
(GeneBank:YP_009725303, amino acid residues 1 - 71) and nsp8
(GeneBank: YP_009725304, amino acid residues 76 — 192) were com-
mercially synthesized as codon optimized for E. coli (Invitrogen). The
genes were cloned into a modified pHIS-2 vector containing N-terminal
6 X His-SUMO tag encoding sequence and expressed and purified using
our protocols developed for viral polymerases (Dubankova et al., 2017).
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Fig. 3. Superposition with known structures of related nsp7-nsp8 complexes Structure of the SARS-CoV-2 nsp7-nsp8 dimer presented in this study (pdb code 6yhu)
was superposed with the hexameric structure of the feline CoV nsp7-nsp8 4:2 complex (A, pdb code 3ub0) or hexadecameric structure of the SARS-CoV 8:8 nsp7-nsp8
complex (B, pdb code 2ahm) or the cryo-electron microscopic structure of the SARS-CoV-2 RNA-dependent RNA polymerase complex composed of the nsp7, nsp8,
and nsp12 proteins bound to two turns of RNA template-product duplex (C, pdb code 6yyt). The nsp7 and nsp8 proteins from the crystal structure are colored in blue
and yellow, respectively. The nsp7 and nsp8 proteins and RNA from the cryo-EM structure are depicted in grey, while the nsp12 protein is colored in red. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Briefly, both plasmids were co-transformed and co-expressed in E. coli
(BL-21 Star (DE3)). Protein expression was induced by addition of IPTG
to a final concentration of 0.6 mM, when the ODggq value of the culture
reached 0.7. Then the temperature was reduced from 37 °C to 25 °C for
16 h. Bacteria were harvested by centrifugation and the cell pellet was
resuspended in a lysis buffer (50 mM HEPES pH 7.5, 20 mM imidazole,
300 mM NacCl, 10% glycerol, 3 mM (-mercaptoethanol) and sonicated
(Q700 Sonicator, QSonica). The lysate was cleared by centrifugation
and the supernatant was incubated with an Ni-NTA agarose (Machery-
Nagel), washed with lysis buffer and finally the protein was eluted with
lysis buffer supplemented with 300 mM imidazole. The 6 X His-SUMO
tag was digested using the Ulpl protease at 4 °C overnight while dia-
lyzing against 50 mM HEPES pH 7.5, 300 mM NacCl, 3 mM [3-mercap-
toethanol. The SUMO tag, Ulpl protease and all uncleaved proteins
were removed by Ni-NTA agarose and pure nsp7 and nsp8 proteins
were then further purified by size exclusion chromatography using a
Superdex 75 16/600 (GE Life Sciences) in 20 mM HEPES pH 7.5,
150 mM NaCl, 3 mM p-mercaptoethanol. Fractions containing both
nsp7 and nsp8 proteins were concentrated to 5 mg/ml, flash frozen in
liquid nitrogen and stored in —80 °C until needed.

Crystallization and crystallographic analysis — Crystals of the nsp7-
nsp8 complex grew in seven days at 20 °C in sitting drops consisting of a
1:1 mixture (300 nl each) of the protein complex and the well solution
(200 mM MgCl,, 100 mM Tris pH 8.5, 30% PEG 4000). Crystals were
cryo-protected in the well solution supplemented by 20% (v/v) glycerol
and flash frozen in liquid nitrogen.

The data were collected from a single frozen crystal at the home
source, integrated and scaled using XDS (Kabsch, 2010). The structure
of the SARS-CoV-2 nsp7 + nsp8 complex was solved by molecular re-
placement using the crystal structure of the SARS-CoV nsp7 + nsp8
complex (pdb code 2AHM) as a search model. The initial model was
obtained with Phaser (McCoy et al., 2007) of the Phenix package
(Adams et al., 2010). The model was further improved using automatic
model refinement with Phenix.refine (Afonine et al., 2012) and sub-
sequent rounds of manual model building in Coot (Emsley et al., 2010).
The obtained statistics for data collection and processing, structure
solution and refinement are summarized in Table 1.

Sequence analysis - Sequence alignment of coronavirus proteins
homologous to SARS-CoV-2 nsp7 (YP_009725303*) and nsp8
(YP_009725304): SARS-CoV (NP_828865*, NP_828866), human enteric
coronavirus strain 4408 (HeCoV; ACJ35483), murine hepatic virus
strain A59 (MHV; POC6X9), Middle East respiratory syndrome-related
coronavirus (MERS-CoV; YP_009047219%, YP_009047220), human
coronavirus 229E (HCoV; NP_073549), feline coronavirus (FCoV;
AAY32594) was generated by ClustalW 2.1 (Thompson et al., 1994) and
ESPript 3.0 (Gouet et al., 1999).

5. Accession codes

The atomic coordinates and structural factors of the crystal structure
of the SARS-CoV-2 nsp7-nsp8 complex have been submitted to the
Protein Data Bank (https://www.rcsb.org) and assigned the identifier
6YHU.
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