Your web browser is out of date. Update your browser for more security, speed and the best experience on this site

Institute of Organic Chemistry
and Biochemistry of the CAS

Take the step towards a career in organic chemistry and biochemistry...


All publications
Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses
Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses
Kateřina Macháčková
Květoslava Mlčochová
Pavlo Potalitsyn
Kateřina Hanková
Ondřej Socha
Miloš Buděšínský
Anja Muždalo
Martin Lepšík
Michaela Černeková
Jelena Radosavljević
Milan Fábry
M. Fábry
Katarína Mitrová
Martina Chrudinová
Jingjing Lin
Yevgen Yurenko
Pavel Hobza
Irena Selicharová
Lenka Žáková
Jiří Jiráček
Journal of Biological Chemistry 294 (46): 17371-17382 (2019).
Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin\'s site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58–IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.
Insertion of Carbenes into Deprotonated nido-Undecaborane, B11H132-
J. Pecyna
Igor Rončević
Josef Michl
Molecules 24 (20): 3779 (2019).
Nitrobenzyl-based fluorescent photocages for spatial and temporal control of signalling lipids in cells
Pankaj Gaur
Oleksandr Kucherak
Y. G. Ermakova
Volodymyr Shvadchak
Dmytro Yushchenko
Chemical Communications 55 (82): 12288-12291 (2019).
2-Deoxyglycoside Conjugates of Lupane Triterpenoids with High Cytotoxic Activity—Synthesis, Activity, and Pharmacokinetic Profile
Pavla Perlíková
M. Kvasnica
M. Urban
M. Hajdúch
J. Šarek
Bioconjugate Chemistry 30 (11): 2844-2858 (2019).

Didn’t find what you expected?