Profil

Vzdělání
2012–2013 Marie Curie Fellowship (18 months), Solid-State NMR group, Department of Chemistry, Durham University, UK

2002–2006 Ph.D. in organic chemistry, Faculty of Science, Charles University, Prague. Ph.D. thesis: Synthesis of ellipticine derivatives, and NMR and theoretical study of their interactions with oligonucleotides. Supervisors: Dr. Buděšínský, Dr. Sejbal

2002–2003 Doctoral fellowship (10 months) with Prof. O. Castaño, Department of Physical Chemistry, University of Alcalá, Spain

1996–2002 MSc. in organic chemistry, Charles University, Prague. Diploma thesis: Synthesis of B-ring substituted lupane derivatives. Supervisor: Dr. Sejbal
Výzkumná témata

Our research involves many aspects of experimental NMR spectroscopy of solutions and solids, molecular modelling and theoretical calculations of spectroscopic parameters. We apply both experimental and theoretical methods in studies of the structure and properties of biologically active compounds (e.g. modified components of nucleic acids), of intra- and inter-molecular interactions (particularly hydrogen bonding), and of reaction mechanisms.
    For example, we pursue these topics:

  • Tautomerism of nucleobases. Tautomerism of NA bases is a crucial factor for the maintaining and translating of genetic information in organisms. Only canonical tautomers of NA bases can form hydrogen bonded complexes with their natural counterparts. On the other hand, rare tautomers of nucleobases have been proposed to be involved in processes catalyzed by NA enzymes. We investigate the factors contributing to the stability of the canonical tautomers by a combination of NMR experiments and theoretical calculations. Rare tautomers can be stabilized in solution by intermolecular hydrogen-bonding interactions with suitable partners.
  • New methods for precise calculations of NMR parameters including anharmonic vibration corrections, the effects of dynamics and solvation.
  • Nuclear quantum effects, such as tunneling and delocalization of hydrogen nuclei, studied by NMR spectroscopy and PIMD simulations. These simulations are a suitable method for the incorporation of nuclear quantum effects into theoretical calculations. Furthermore, PIMD simulations allow predictions of deuterium isotope effects in excellent agreement with experiment for both isolated molecules and molecular crystals.
  • ‘Through-space’ J-couplings between hydrogen atoms can be detected (in contradiction to many textbooks) and used for structure determination.
  • NMR crystallography of disordered solids. We study the structure and dynamics of disordered solids by a combination of SS-NMR experiments and advanced quantum-chemical calculations. We apply these methods to a variety of disordered systems, such as solid hydrates of biomolecules or materials with potential applications in nanodevices.   

Vybrané publikace

Experimental and Theoretical Evidence of Spin‐Orbit Heavy Atom on the Light Atom <sup>1</sup>H NMR Chemical Shifts Induced through H⋅⋅⋅I<sup>−</sup> Hydrogen Bond
Experimental and Theoretical Evidence of Spin‐Orbit Heavy Atom on the Light Atom 1H NMR Chemical Shifts Induced through H⋅⋅⋅I Hydrogen Bond
Chemistry - A European Journal 26 (40): 8698-8702 (2020)
Spin‐orbit (SO) heavy‐atom on the light‐atom (SO‐HALA) effect is the largest relativistic effect caused by a heavy atom on its light‐atom neighbors, leading, for example, to unexpected NMR chemical shifts of 1H, 13C, and 15N nuclei. In this study, a combined experimental and theoretical evidence for the SO‐HALA effect transmitted through hydrogen bond is presented. Solid‐state NMR data for a series of 4‐dimethylaminopyridine salts containing I, Br and Cl counter ions were obtained experimentally and by theoretical calculations. A comparison of the experimental chemical shifts with those calculated by a standard DFT methodology without the SO contribution to the chemical shifts revealed a remarkable error of the calculated proton chemical shift of a hydrogen atom that is in close contact with the iodide anion. The addition of the relativistic SO correction in the calculations significantly improves overall agreement with the experiment and confirms the propagation of the SO‐HALA…
Tautomerism of Guanine Analogues
Biomolecules 10 (2): 170 (2020)
Tautomerism of azo dyes in the solid state studied by 15N, 14N, 13C and 1H NMR spectroscopy, X-ray diffraction and quantum-chemical calculations
Dyes and Pigments 178: 108342 (2020)
Towards Accurate Predictions of Proton NMR Spectroscopic Parameters in Molecular Solids
ChemPhysChem 21 (18): 2075-2083 (2020)
Polysubstituted 5‐Phenylazopyrimidines Extremely Fast Non‐Ionic Photochromic Oscillators
Angewandte Chemie International Edition 59 (36): 15590-15594 (2020)

Nejnovější publikace

(E)-7-Ethylidene-lithocholic Acid (7-ELCA) Is a Potent Dual Farnesoid X Receptor (FXR) Antagonist and GPBAR1 Agonist Inhibiting FXR-Induced Gene Expression in Hepatocytes and Stimulating Glucagon-like Peptide-1 Secretion From Enteroendocrine Cells
Frontiers in Pharmacology 12: 713149 (2021)
C1′-Branched acyclic nucleoside phosphonates mimicking adenosine monophosphate: Potent inhibitors of Trypanosoma brucei adenine phosphoribosyltransferase
European Journal of Medicinal Chemistry 25: 113798 (2021)
Addition Reaction between Piperidine and C60 to Form 1,4-Disubstituted C60 Proceeds through van der Waals and Dative Bond Complexes: Theoretical and Experimental Study
Journal of the American Chemical Society 143 (29): 10930–10939 (2021)
Hydrogen-Bonding Interactions of Methylated Adenine Derivatives
European Journal of Organic Chemistry 2021 (29): 4166-4173