• Domů
  • Press room
  • Novinky
  • Čeští vědci dál posunují možnosti zobrazovacích technik a odhalují tajemný svět molekul
Tisková zpráva, Video

Čeští vědci dál posunují možnosti zobrazovacích technik a odhalují tajemný svět molekul

29. srpna 2023
Čeští vědci dál posunují možnosti zobrazovacích technik a odhalují tajemný svět molekul
Experimentální měření potvrdila teoretické předpovědi existence π-díry. Zleva doprava: Chemická struktura zkoumané molekuly, vypočtená mapa elektrostatického potenciálu molekuly, experimentální obraz Kelvinovou sondovou mikroskopií (KPFM), simulovaný obraz KPFM.

Vědci z ÚOCHB, Fyzikálního ústavu AV ČR a z Univerzity Palackého v Olomouci znovu úspěšně odkrývají tajemství světa molekul a atomů. Experimentem potvrdili správnost dekády staré teorie, která předpokládala nerovnoměrné rozložení elektronové hustoty v aromatických molekulách. Tento jev významně ovlivňuje fyzikálně-chemické vlastnosti molekul i jejich interakce. Zmíněný výzkum rozšiřuje možnosti designování nových nanomateriálů a článek o něm aktuálně zveřejnil vědecký časopis Nature Communications.

V předchozí přelomové studii popsal stejný autorský tým v časopise Science nerovnoměrné rozložení elektronů v atomu, tzv. sigma-díru (σ-díru). Nyní výzkumníci potvrdili existenci tzv. pí-díry (π-díry). V aromatických uhlovodících najdeme aromatické elektrony v oblacích nad a pod uhlíkovým skeletem. Nahradíme-li periferní vodíky elektronegativnějšími atomy či skupinami atomů, které odtahují elektrony, změní se původně záporně nabité oblaky na kladně nabité elektronové díry.

Vědci využili pokročilou metodu rastrovací mikroskopie a dál posunuli její možnosti. Zmíněná metoda pracuje v subatomárním rozlišení, a dokáže proto zobrazit nejen atomy v molekulách, ale i strukturu elektronového obalu atomu. Jak připomíná jeden ze zainteresovaných výzkumníků Bruno de la Torre, vedoucí vědecké skupiny z Českého institutu výzkumu a pokročilých technologií UPOL (CATRIN), za úspěchem popsaného experimentu stojí zejména skvělé vybavení jeho domovského pracoviště a účast vynikajících doktorandů.

„Díky našim předchozím zkušenostem s technikou silové mikroskopie s Kelvinovou sondou s funkcionalizovanými hroty (KPFM) jsme byli schopni naše měření zpřesnit a získat velmi kompletní soubory dat, které nám pomohly prohloubit naše znalosti nejen o tom, jak je v molekulách rozložen náboj, ale také o tom, jaké pozorovatelné údaje se touto technikou získávají,“ popisuje Bruno de la Torre.

Prof. Pavel Hobza, Distinguished Chair a vedoucí skupiny Nekovalentní interakce, ÚOCHB (Foto: Tomáš Belloň / ÚOCHB)

Moderní silová mikroskopie je doménou výzkumníků z Fyzikálního ústavu dlouhodobě. Nebývalé prostorové rozlišení naplno využili nejen v případě molekulárních struktur. Před časem potvrdili existenci nerovnoměrného rozložení elektronové hustoty kolem atomů halogenů, tzv. σ-děr. Tento úspěch zaznamenal v roce 2021 jeden z nejuznávanějších světových vědeckých časopisů, časopis Science. Na tehdejším i současném výzkumu se významně podílel i jeden z nejcitovanějších českých vědců současnosti prof. Pavel Hobza z Ústavu organické chemie a biochemie AV ČR (ÚOCHB).

„Potvrzení existence π-díry stejně jako před tím σ-díry plně dokládá, jak kvalitní jsou teoretické předpovědi kvantové chemie, které s oběma jevy počítají už celá desetiletí. Ukazuje se, že se na ně lze spolehnout i v případě, kdy chybí dostupný experiment,“ říká Pavel Hobza.

Výsledky výzkumu českých vědců na subatomární a submolekulární úrovni je možné přirovnat k objevu vesmírných černých děr. I s nimi totiž desítky let počítala teorie, než jejich existenci potvrdil experiment.

Vědeckému světu pomůže lepší znalost rozložení elektronového náboje v první řadě pochopit řadu chemických i biologických procesů. V praktické rovině se promítne do schopnosti stavět nové supramolekuly a následně ve vývoji moderních nanomateriálů s vylepšenými vlastnostmi.

Původní článek

  • Mallada, B., Ondráček, M., Lamanec, M., Gallardo, A., Jiménez-Martin, A., de la Torre, B., Hobza, P., Jelínek, P. Visualization of π-hole in molecules by means of Kelvin probe force microscopy. Nat Commun 14, 4954 (2023). https://doi.org/10.1038/s41467-023-40593-3

Sdílet článek
Čtěte dále...
Prohlédnout všechny články arrow